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Toward Standard Figures-of-Merit for Spatial
and Quasi-Optical Power-Combined Arrays

Mark Gouker

Abstract—A consistent set of figures-of-merit is proposed for the stan-
dard characterization of spatial and quasioptical power-combined arrays.
A new figure-of-merit, the effective transmitter power, is presented
along with slightly modified definitions of standard figures-of-merit. The
definitions of these figures-of-merit have been chosen to more directly
compare the performance of spatial and quasioptical power-combined
arrays with one another and with conventional circuit power-combined
transmitters and amplifiers.

I. INTRODUCTION

The development of quasioptical! power combining [2], [3] has
generated significant interest as an alternative approach for moderate
power solid-state oscillators and amplifiers. In addition to generating
an explosion of activity in quasioptical power-combining [4], [5],
this development has rekindled interest in spatial power-combining
techniques that use more traditional antenna array configurations
[6]-[9]. The rapid growth in this field has led to a number of different
definitions for the figures-of-merit which quantify the performance of
these arrays. In this paper standardization of some of these figures-
of-merit is proposed.

The overriding guideline in the proposed definitions of the figures-
of-merit is to account for the loss mechanisms which are present in
the spatial power-combining technique.? The inclusion of these losses
enables a more direct comparison between different spatial power-
combined arrays and a comparison to conventional circuit combining
techniques.

II. FIGURES-OF-MERIT

A. Equivalent Isotropic Radiated Power

The most important and unambiguous figure-of-merit for a spatial
power-combined array is the equivalent isotropic radiated power,
EIRP. The EIRP is most often determined by measuring the power
received by a standard gain horn placed in the far field of the
transmitting array. The expression for the EIRP is given by

Prec A0 -2 (1)
Grec \47R

where P, is the power received by the standard gain hom, G, is
the gain of the standard gain horn, and R is the separation distance
between the standard gain horn and the array.

FIRP = PtransGtrans =
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The outputs from a collection of transistors or diodes can be combined
at the chip level, in a circuit structure or in free space [1]. The quasi-optical
approach is a variation of combining in free space (spatial combining). A
distinguishing feature of this approach is that it employs elements originally
developed for optical frequencies such as Fabry-Perot cavities and polarizers.

2 Quasi-optical is implied since it is a subset of the spatial power combining
approach. The term quasi-optical will only be used when a reference to this
particular type of spatial power combining is made.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO 7, JULY 1995

B. Effective Transmitter Power

The RF transmitted power, Pirans in (1), is also an important
figure-of-merit. However, determining the transmitted power with
accuracy requires knowledge of the antenna gain for the array, G¢rans
in (1). Unfortunately, the antenna gain for the array is difficult to
determine with precision since it requires identification of the loss
due to the active devices and the loss due to the radiating elements.

An alternative figure-of-merit, called the effective tramsmitter
power, is proposed. The only difference in this new figure-of-merit is
that gain for a lossless antenna array, i.e., the directivity of the array,
Dirans. 18 used in place of the actual gain. The effective transmitter
power, P.rr, is defined as

__ EIRP
= Dtrans.

Since the directivity is lossless, using the directivity to calculate
the transmitter power instead of using the actual antenna gain
accounts for the losses present in the real transmitter. This definition
incorporates the dielectric and conductor losses of the radiating
elements and the losses due to the deviations from the desired
phase and amplitude distribution in the array. There are two major
advantages to using the effective transmitter power figure-of-merit in
place of the actual transmitter power. First. this definition provides an
accurate, unambiguous figure-of-merit that allows direct comparison
of the performance of two different spatial power-combined arrays.
The proposed definition succinctly quantifies the RF power radiated
into the fundamental antenna “mode” (pattern).

Second, this figure-of-merit allows a comparison to conventional
circuit combined amplifiers and oscillators. The effective transmitter
power is roughly equivalent to the power in the fundamental mode
of the output port of a circuit power-combined amplifier or oscillator.
In conventional circuit power combining, the loss of the combining
circuitry (microstrip or waveguide combiners) is incorporated in
the reported output power. Likewise, the losses for the combining
circuitry (radiating elements) of a spatial power-combined array are
included in the effective transmitter power.

In the majority of atrays, a uniform phase and amplitude is
desired since this yields the maximum directivity from the physical
aperture. In this case the directivity is most easily calculated using
the uniformly illuminated aperture approximation, and it is given by

47 Aarray
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= T%_
where A“""*Y is the physical size of the array, A*° is the physical
size of a unit cell (inter-element spacing) in the array, and n is
the number of umit cells (elements) in the array. The uniformly
illuminated aperture approximation is reasonable provided: 1) both
dimensions of the array are greater than two to three wavelengths,
or 2) the number of elements per side of the array is much greater
than 1, and the spacing between the array elements is small [10]. The
second condition is likely to be fulfilled in smaller grid arrays (one
to two Ag by one to two Ag).

There are cases, however, where a nonuniform amplitude and/or
phase is desired. One example is a quasi-optical amplifier placed at
the beam waist of a beam waveguide system. If the array is larger
than the beam waist, it will have a nonuniform illumination. Another
example is an array designed to feed a reflector antenna system. A
nonuniform amplitude and phase may be desired to minimize the

Pe (2)

Dt'rans =

(3)
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* Fig. 1. System configurations for spatial amplifier arrays. (a) Far-field sys-
tem: R1, Re > 2D?/Xo. (b) Beam waveguide system. (c) Near-field cascade
system: r < D?/Xg, R > 2D?/Xq.

spill-over loss in the reflector antenna. In these cases, the directivity
will have to be determined through calculation or by measurement. It
should be noted that the directivity found by measurement of only the
two principle planes is not accurate enough for the calculation of a
figure-of-merit. The directivity should be measured by making many
conical or great-circle cuts for both the co- and cross-polarization
components. The number of cuts depends on the complexity of the
antenna pattern [11].

C. System Gain

The third important system figure-of-merit is the total system gain.
It is defined as the effective transmitter power divided by the power
input into the transmitter. It is given by

Ll @
k2¢)

where P. ;s is the effective transmitter power of the output stage of
the system and P;,, is the power at the input port of the transmitter.
For a spatially-fed array, e.g., [7], [8], [12], [13], the input port
might be the waveguide flange of the horn antenna that illuminates
the first array in the system. Thus all the losses, such as spill-over
and deviation from the desired illumination amplitude and phase, are
taken into account. In the case where a spatially-fed array is fed by

Gsystem =
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a distant source, for example, a microwave repeater, the input power
should be calculated from the incident power density and the physical
aperture of the array. For a circuit-fed array, e.g., [6], [9], the input
port might be the coax- to-microstrip transition at the input to the
corporate feed network. Thus the loss of the feed-network is taken
into account.

D. Power-Added Efficiency (DC-to-RF Conversion Efficiency)

The power-added efficiency (PAE) is the fourth quantity that
is critical to the characterization of the array performance. For
transmitters with high system gain, the PAE is essentially the dc-
to-RF efficiency, Pac—rr. It is found from the effective transmitter
power of the array minus the power input into the transmitter divided
by the dc power supplied to the array, Pqyc. It is given by

_ Py — Pin
PAE = S

1
=7dc—RF (1 TG ) &)
system

E. Gain/Scattering Parameters of a Spatial or
Quasi-Optical Amplifier Array

The term spatial amplifier will be used to refer to both quasi-optical
amplifiers,” e.g., [12], [13], and spatially fed/spatially combined
arrays,4 e.g., [7], [8], [14], [15]. In these arrays it is desired to assess
the increase in power of the wave front that passes through the array.
The system configurations, which utilize the spatial amplifier, can
be broken into three categories: far-field systems, beam waveguide
systems, and near-field cascade systems, see Fig. 1. In a far-field
system, Fig. 1(a), the spatial amplifier is placed in the far-ficld of
its source, and the next element in the system or the designated
receiving location is in the far-field of the spatial amplifier. In a
beam waveguide system, Fig. 1(b), the spatial amplifier is placed at
the beam waist of the beam waveguide. In a near-field cascade system,
Fig. 1(c), the spatial amplifier is placed in the near-field of its source,
and the next element in the system is placed in the near-field of the
spatial amplifier.

For the far-field configuration, a definition of the spatial amplifier
gain and a measurement technique have been proposed [13] and have
gained acceptance [12], [14], [15]. The spatial amplifier is placed in
the far-field of the transmitting standard gain horn, and the power
transmitted from the spatial amplifier is measured by placing the
receiving standard gain horn in the far-field of the amplifier array
as in Fig. 1(a). The expression for the gain can be derived by using
the Friis transmission equation and by defining the gain as the ratio
of the power radiated from the array to the power incident on the
array. Using the approximation for a uniformly illuminated aperture
and the physical aperture of the array, A*""*Y, the gain of the array
is given by [13]

SGH SGH garray\ —1
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where the quantities are defined in Fig. 1(a).

In the beam waveguide configuration, the gain must be measured in
a setup which provides a beam waveguide. An added benefit of the
beam waveguide setup is that is overcomes many of the practical
impediments to performing free-space S-parameter measurements.

3Those that contain quasi-optical elements such as beam waveguides and
grid polarizers.
4Those that are based on conventional antenna designs.
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A full set of S-parameters provides a better characterization of the
array, because it allows prediction of standing waves between the
cascade arrays. However, the presence of the standing waves will
modify the antenna input impedance and thus the load presented to
the active devices. The effect of the standing waves on the amplifier
array performance must be found by modeling at the antenna and
active device level. Successful S-parameter measurements have been
reported using a beam waveguide arrangement [16], [17].

For spatial amplifiers in a near-field cascade system, there are at
least two options in configuring the gain or S-parameter measurement.
One can make the assumption that the waves illuminating and
radiating from the spatial amplifier are collimated and perform a
free-space far-field measurement, as in Fig. 1(a). This assumption
ignores reactive near-field coupling between closely spaced arrays,
and amplitude and phase variations present in real systems. In other
near-field cascade systems, the spatial amplifiers are placed in a
custom waveguiding structure with the purpose of more uniformly
illuminating the amplifier array. In this case, the gain or S-parameter
measurement can be made within this custom waveguide and will
require custom calibration standards.

F. Effective Isotropic Power Gain

The effective isotropic power gain (EIPG) [7] is the most basic,
directly measurable quantity for a spatial amplifier. It is the product
of the receive-antenna gain of the spatial amplifier, the gain of the
active devices in the array, and the transmit-antenna gain of the spatial
amplifier. The EIPG is defined as [7]

EIPG = G;{;ayGaTrayG%rTray
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where G, *Y is the receive-antenna gain of the spatial amplifier,
G777 is the transmit-antenna gain of the spatial amplifier, and
the other quantities are as above, see Fig. 1(a). The EIPG has
many parallels to the effective isotropic radiated power, EIRP, for
a transmitting array.

G. Combining Efficiency

The combining efficiency is a quantification of how efficiently the
output power from the active devices are combined. It is defined as
the ratio of effective transmitter power to the total available power
and is given by

AL ®)
Z Pn, avazl
1

here ncoms is the combing efficiency, n is the number of the active
devices in the array and Py 4yq. is the available power from the
nth active device. The available power, discussed in more detail
below, is defined as the output power from the active device when
it is presented with the optimum load impedance (to produce the
maximum output power).

There are two loss mechanisms which affect the combing effi-
ciency. The first loss consists of the departures from the desired phase
and amplitude of the elements and the resistive and dielectric loss.
This loss is taken into account by using the effective transmitter
power. The second loss arises from not presenting the optimum
load impedance to the active devices. In quasi-optical arrays, the
parameters of the active antenna must be properly chosen to present

Necomb =
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the optimum load impedance to the active device [18]. In more
conventional spatial power-combined arrays, the operation of the
active device and the antenna are distinct. The impedance of the
antenna must be transformed to the optimum load impedance of the
active device via an impedance matching network. In both cases, not
presenting the optimum load impedance to the active devices is taken
into account by using the total available power.

The available power, P, ava.1, 18 a function of the dc bias and
depends on presenting the optimum load impedance (fundamental
and harmonic) to the active device. To determine the available output
power of the active device, one must measure it directly through a
load-pull measurement. While this technique is accurate, it requires
sophisticated instrumentation, and it is not commonly available.

An alternative to the load pull-measurement is to estimate the
available output power using idealized models of the active devices.
Estimates of the optimum load impedance and available output power
for IMPATT didoes is given in [19]. For idealized transistors, the
optimum load impedance and available output power for various bias
conditions and resistive or tuned load impedances are given in [20].
For MMIC amplifiers, the maximum available output power can be
estimated by considering the dc bias of the transistor in the output
stage and the equations given in [20].

III. CONCLUSION

A set of figures-of-merit has been defined to account for the losses
present in the spatial power-combining technique. These definitions
account for the losses from undesired phase and amplitude variations
among the elements, the dielectric and conductor losses of the
radiating elements, and the impedance mismatch. The inclusion
of these losses in the figures-of-merit permits a more accurate
comparison of spatial power-combined arrays with one another and
with conventional circuit power-combining techniques.
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General Formulas for the Method
of Lines in Cylindrical Coordinates

Reinhold Pregla

Abstract— General formulas are given for the method of lines in
cylindrical coordinates and angular discretization. They describe the
transfer of the fields from one boundary of a cylindrical layer to another
in a multilayered structure. With these formulas, programming can be
accomplished without performing additional analysis.

1. INTRODUCTION

The method of lines, as a special FDM, enables analytic calculation
in a specific direction. In this direction, the structures to be analysed
can consist of multiple, stacked layers without causing an increase
in the difficulty or complexity of the analysis. In general, field com-
ponents from the boundary surface of one layer can be transformed
to that of another layer. The basic theory and important formulas for
this procedure are explained in [1]. These transformation formulas
are easily suited to the analysis of waveguides such as those used
in integrated optics, [2], [3] and diffused waveguides with up to 80
layers or more can be modeled using this method.

Of late, cylindrical structures have also become more meaningful.
The basic principle of using the method of lines to solve wave
equations in cylindrical coordinates is given in [4]. A treatment of
microstrip lines of arbitrary cross section, accomplished with the
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(@) (b)

Fig. 1. Cross sections of cylindrical multilayer structures with discretization
lines using ABC’s (a) and PBC’c (b). (a) General cross section, (b) sectorial
cross section,

help of cylindrical functions, appears in [5], and in [6] the analysis
of antennas composed of microstrip and microslot resonators using
cylindrical bodies is explained. Dipoles are analyzed in [7] using
the methodology described in [1]. A generalized description of the
transformation of fields from one cylindrical boundary surface to
another, however, has not been completed. The purpose of this
document is to provide such a description. Having such general
formulas computer programming is made very easy.

II. METHODS OF ANALYSIS

The general method of analysis, described below, applies to
structures such as those diagrammed in Fig. 1. The number of layers
in these structures is arbitrary. An arbitrary number of metallic strips
or cylinders can be placed between the layers of the structure, and
the layers can begin at p = 0 and extend to infinity. Structures with
a p-dependent permittivity (graded index fibefs) can be successfully
modeled by a sufficient number of distinct layers. The goal of this
document is thus the formulation of a general transfer for fields
between two boundary layers, i.e. from a surface A to a surface B in
the ith layer. The procedure for this is analogous to those in [1] and
[8], [9], but in cylindrical coordinates and with angular discretization.
The permittivities in the layers can also be complex.

The whole field may be obtained from the components in the z
direction, e, and k.. These are the only Cartesian components in the
cylindrical coordinate system, and for these components the following
wave equations are valid

= 5 F,
V?Fz—i_'a?—'_sTFZ:O ¢}
where F, = E, or F, = H, = NoH:,Z = koz,p = kop and
=2 18 /(_0 1 8°
= | p= - 2
Ve ﬁaﬁ(p3ﬁ>+52 32 @

is the Laplace operator in cylindrical coordinates.k, and 7, are the
wave number and wave impedance of free space, respectively. In the
following we assume propagation in the z direction. Therefore we
write —j+/2re for 8/0Z. er. is the effective dielectric constant.

For the solution of the wave (1) and for the determination of the
field components, a discretization in ¢ direction is performed [4].
As stated there, in principle, the analysis is the same as in Cartesian
coordinates. Therefore, all that is known for the discretization in carte-
sian coordinates can be used here for the ¢ direction. In Fig. 1 two
different possibilities are shown. To save memory and computational
effort, absorbing boundary conditions (ABC) are suitable (a). If the
whole cross section is of interest, periodic boundary conditions (PBC)
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