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Toward Standard Figures-of-Merit for Spatial

and Quasi-Optical Power-Combined Arrays

Mark Gouker

Abstract4 consistent set of figures-of-merit is proposed for the stan-

dard characterization of spatial and quasioptical power-combined arrays.
A new figure-of-merit, the effective transmitter power, is presented

along with slightly modified definitions of standard figures-of-merit. The

definitions of these figures-of-merit have been chosen to more directly
compare the performance of spatial and quasioptical power-combined

arrays with one another and with conventional circuit power-combined
transmitters and amplifiers.

I. INTRODUCTION

The development of quasiopticall power combining [2], [3] has

generated significant interest as an alternative approach for moderate

power solid-state oscillators and amplifiers. In addition to generating

an explosion of activity in quasioptical power-combining [4], [5],

this development has rekindled interest in spatial power-combining

techniques that use more traditional antenna array configurations

[6]-[9]. The rapid growth in this field has led to a number of different

definitions for the figures-of-merit which quantify the performance of

these arrays. In this paper standardization of some of these figures-

of-merit is proposed.

The overriding guideline in the proposed definitions of the figures-

of-merit is to account for the loss mechanisms which are present in

the spatial power-combining technique.z The inclusion of these losses

enables a more direct comparison between different spatial power-

combined arrays and a comparison to conventional circuit combining

techniques.

II. FIGURES-OF-MERIT

A. Equivalent Isotropic Radiated Power

The most important and unambiguous figure-of-merit for a spatial

power-combined array is the equivalent isotropic radiated power,

EIRP. The EIRP is most often determined by measuring the power

received by a standard gain horn placed in the far field of the

transmitting array. The expression for the EIRP is given by

EIRP = Pt
P

()

AQ ‘2
rans Gtrans = e ~ (1]

where P, ~. is the power received by the standard gain horn, G,.= is

the gain of the standard gain horn, and R is the separation distance

between the standard gain horn and the array.
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] The outputs from a collection of transistors or diodes can be combined

at the chip level, in a circuit structure or in free space [1]. The quasi-optical

approach is a v~iation of combining in free space (spatial combining). A
distingmshing feature of this approach is that it employs elements originally
developed for opticat frequencies such as Fabry–Perot cavities and polarizers.

2Quasi-opticat is implied since it is a subset of the spatial power combining

approach. The term quasi-Optical will only be used when a reference to thk
particular type of spatial power combining is made.

B. Effective Transmitter Power

The RF transmitted power, PtTans in (1), is also an important

figure-of-merit. However, determining the transmitted power with

accuracy requires knowledge of the antenna gain for the array, Gi ~~~,

in (1). Unfortunately, the antenna gain for the array is difficult to

determine with precision since it requires identification of the loss

due to the active devices and the loss due to the radiating elements.

An alternative figure-of-merit, called the effective transmitter
power, is proposed. The only difference in this new figure-of-merit is

that gain for a lossless antenna array, i.e., the directivity of the array,

Dt,an.. is used in place of the actual gain. The effective transmitter

power, Pel[, is defined as

EIRP
‘.ff = Dtran, . (2)

Since the directivity is lossless, using the directivity to calculate

the transmitter power instead of using the actual antenna gain

accounts for the losses present in the real transmitter. This definition

incorporates the dielectric and conductor losses of the radiating

elements and the losses due to the deviations from the desired

phase and amplitude distribution in the array. There are two major

advantages to using the effective transmitter power figure-of-merit in

place of the actual transmitter power. First, this definition provides an

accurate. unambiguous figure-of-merit that allows direct comparison

of the performance of two different spatial power-combined arrays.

The proposed definition succinctly quantifies the RF power radiated

into the fundamental antenna “mode” (pattern).

Second, this figure-of-merit allows a comparison to conventional

circuit combined amplifiers and oscillators. The effective transmitter

power is roughly equivalent to the power in the fundamental mode

of the output port of a circuit power-combined amplifier or oscillator.

In conventional circuit power combining, the loss of the combining

circuitry (microstrip or waveguide combiners) is incorporated in

the reported output power. Likewise, the losses for the combining

circuitry (radiating elements) of a spatial power-combined array are

included in the effective transmitter power.

In the majority of arrays, a uniform phase and amplitude is

desired since this yields the maximum directivity from the physical

aperture. In this case the directivity is most easily calculated using

the uniformly illuminated aperture approximation, and it is given by

47rA
Cz,rmy

Dtm. = ~2

4irA&r

A:
(3)

where A“rTay M the physical size of the array, AU’ is the physical

size of a unit cell (inter-element spacing) in the array, and n is

the number of unit cells (elements) in the array. The uniformly

illuminated aperture approximation is reasonable provided: 1) both

dimensions of the array are greater than two to three wavelengths,

or 2) the number of elements per side of the array is much greater

than 1, and the spacing between the array elements is small [10]. The

second condition is likely to be fulfilled in smaller grid arrays (one

to two AO by one to two Ao).

There are cases, however, where a nonuniform amplitude and/or

phase is desired. One example is a quasi-optical amplifier placed at

the beam waist of a beam waveguide system. If the array is larger

than the beam waist, it will have a nonuniform illumination. Another

example is an array designed to feed a reflector antenna system. A

nonuniform amplitude and phase may be desired to minimize the
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a distant source, for example, a microwave repeater, the input power

should be calculated from the incident power density and the physical

aperture of the array, For a circuit-fed array, e.g., [6], [9], the input

port might be the coax- to-microstrip transition at the input LO the

corporate feed network. Thus the loss of the feed-network is taken

into account.

D. Power-Added E@ciency (DC-to-RF Conversion Eficiency)

The power-added efficiency (PAE) is the fourth quantity that

is critical to the characterization of the array performance. For

transmitters with high system gain, the PAE is essentially the dc-

to-~ efficiency, ~dc_RF. It iS found frOm the effective transmitter

power of the array minus the power input into the transmitter divided

by the dc power supplied to the array, pd.. It is given by

E. Gain/Scattering Parameters of a Spatial or

Quasi-Optical Ampl.$er Array

(5)

The term spatial amplifier will be used to refer to both quasi-optical

amplifiers,3 e.g., [12], [13], and spatially fedkpatially combined

arrays,4 e.g., [7], [8], [14], [15]. In these arrays it is desired to ;nssess

the increase in power of the wave front that passes through the array.

The system configurations, which utilize the spatial amplifier, can

be broken into three categories: far-field systems, beam waveguide

systems, and near-field cascade systems, see Fig. 1. In a far-field

system, Fig. 1(a), the spatial amplifier is placed in the far-field of

its source, and the next element in the system or the designated

receiving location is in the far-field of the spatial amplifier. In a

beam waveguide system, Fig. l(b), the spatial amplifier is placed at

I the beam waist of the beam wave.guide, In a near-field cascade system,

(c)

Fig. 1. System configurations for spatial amplifier arrays. (a) Far-field sys-

tem RI, R2 > 2D2 /Ao. (b) Beam waveguide system. (c) Near-field cascade

system r < D2/A0, R > 2D2JA0.

spill-over loss in the reflector antenna. In these cases, the directivity

will have to be determined through calculation or by measurement. It

should be noted that the directivity found by measurement of only the

two principle planes is not accurate enough for the calculation of a

figure-of-merit. The directivity should be measured by making many

conical or great-circle cuts for both the co- and cross-polarization

components. The number of cuts depends on the complexity of the

antenna pattern [11 ].

C. System Gain

The third important system figure-of-merit is the total system gain.

It is defined as the effective transmitter power divided by the power

input into the transmitter. It is given by

(4)

where P. ~~ is the effecti~e transmitter power of the output stage of

the system and P;. is the power at the input port of the transmitter.

For a spatially-fed array, e.g., [7], [8], [12], [13], the input port

might be the waveguide flange of the horn antenna that illuminates

the first array in the system. Thus all the losses, such as spill-over

and deviation from the desired illumination amplitude and phase, are

taken into account. In the case where a spatially-fed array is fed by

Fig. 1(c), the spatial amplifier is ~laced in the near-field of its ~ource,

and the next element in the system is placed in the near-field of the

spatial amplifier.

For the far-field configuration, a definition of the spatial arqplitier

gain and a measurement technique have been proposed [13] andl have

gained acceptance [12], [14], [15]. The spatial amplifier is placed in

the far-field of the transmitting standard gain horn, and the power

transmitted from the spatial amplifier is measured by placing the

receiving standard gain horn in the far-field of the amplifier array

as in Fig. 1(a). The expression for the gain cw be derived by using

the Friis transmission equation and by defining the gain as the ratio

of the power radiated from the array to the power incident cm the

array. Using the approximation for a uniformly illuminated aperture

and the physical aperture of the array, AQ”ay, the gain of the array

is given by [13]

(.,..,_P;:H G;:HA”’””Y “G –v
T. 47rR~ )

“( )

G;: HA”””Y ‘~

4xR:
(6)

where the quantities are defined in Fig. 1(a).

In the beam waveguide configuration, the gain must be measured in

a setup which provides a beam waveguide. An added benefit of the

beam waveguide setup is that is overcomes many of the practical

impediments to performing free-space S-parameter measurements.

3Those that contain quasi-optical elements such as beam waveguides ad

grid polarizers.

4Those that are based on conventional antenna designs.
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A full set of S-parameters provides a better characterization of the

array, because it allows prediction of standing waves between the

cascade arrays. However, the presence of the standing waves will

modify the antenna input impedance and thus the load presented to

the active devices. The effect of the standing waves on the amplifier

array performance must be found by modeling at the antenna and

active device level. Successful S-parameter measurements have been

reported using a beam waveguide arrangement [16], [17].

For spatial amplifiers in a near-field cascade system, there are at

least two options in configuring the gain or S-parameter measurement.

One can make the assumption that the waves illuminating and

radiating from the spatial amplifier are collimated and perform a

free-space fat-field measurement, as in Fig. 1(a). This assumption

ignores reactive near-field coupling between closely spaced arrays,

and amplitude and phase variations present in real systems. In other

neat-field cascade systems, the spatial amplifiers are placed in a

custom waveguiding structure with the purpose of more uniformly

illuminating the amplifier array. In this case, the gain or S-parameter

measurement can be made within this custom waveguide and will

require custom calibration standards.

F. Effective Isotropic Power Gain

The effective isotropic power gain (EIPG) [7] is the most basic,

directly measurable quantity for a spatial amplifier. It is the product

of the receive-antenna gain of the spatial amplifier, the gain of the

active devices in the array, and the transmit-antenna gain of the spatial

amplifier. The EIPG is ‘defined as [7]

EIPG = G;z’a’GaT’ay G~~’a’

\ –2

(7)

““’”v is the receive+ mtenna gain of the spatial amplifier,where GRZ

G ~Z’” Y is the transmit-antenna gain of the spatial amplifier, and

the other quantities are as above, see Fig. 1(a). The EIPG has

many parrdlels to the effective isotropic radiated power, EIRP, for

a transmitting array.

G. Combining Efficiency

The combining efficiency is a quantification of how efficiently the

output power from the active devices are combined. It is defined as

the ratio of effective transmitter power to the total available power

and is given by

Peff
Tomb = n (8)

~P.,auazl

here q,a~~ is the combing efficiency, n is the number of the active

devices in the array and l’~, ~~~,t is the available power from the
nth active device. The available power, discussed in more detail

below, is defined as the output power from the active device when

it is presented with the optimum load impedance (to produce the

maximum output power).

There are two loss mechanisms which affect the combing effi-

ciency. The first loss consists of the departures from the desired phase

and amplitude of the elements and the resistive and dielectric loss.

This loss is taken into account by using the effective transmitter

power. The second loss arises from not presenting the optimum

load impedance to the active devices. In quasi-optical arrays, the

parameters of the active antenna must be properly chosen to present

the optimum load impedance to the active device [18]. In more

conventional spatial power-combined arrays, the operation of the

active device and the antenna are distinct. The impedance of the

antenna must be transformed to the optimum load impedance of the

active device via an impedance matching network. In both cases, not

presenting the optimum load impedance to the active devices is taken

into account by using the total available power.

The available power, P., . ... t~, is a function of the dc bias and

depends on presenting the optimum load impedance (fundamental

and harmonic) to the active device. To determine the available output

power of the active device, one must measure it directly through a

load-pull measurement. While this technique is accurate, it requires

sophisticated instrumentation, and it is not commonly available.

An alternative to the load pull-measurement is to estimate the

available output power using idealized models of the active devices.

Estimates of the optimum load impedance and available output power

for IMPATT didoes is given in [19]. For idealized transistors, the

optimum load impedance and available output power for various bias

conditions and resistive or tuned load impedances are given in [20].

For MMIC amplifiers, the maximum available output power can be

estimated by considering the dc bias of the transistor in the output

stage and the equations given in [20].

III. CONCLUSION

A set of figures-of-merit has been defined to account for the losses

present in the spatird power-combining technique. These definitions

account for the losses from undesired phase and amplitude variations

among the elements, the dielectric and conductor losses of the

radiating elements, and the impedance mismatch. The inclusion

of these losses in the figures-of-merit permits a more accurate

comparison of spatial power-combined arrays with one another and

with conventional circuit power-combining techniques.
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General Formulas for the Method

of Lines in Cylindrical Coordinates

Reinhold Pregla

Absfract— Generat formulas are given for the method of lines in

cylindrical coordinates and angular dkcretization. They describe the

transfer of the fields from one bonndary of a cylindrical layer to another
in a multilayered structure. With these formulas, programming can be

accomplished without performing additional analysis.

I. INTRODUCTION

The method of lines, as a special FDM, enables analytic calculation

in a specific direction. In this direction, the structures to be analysed

can consist of multiple, stacked layers without causing an increase

in the difficulty or complexity of the analysis. In general, field com-

ponents from the boundary surface of one layer can be transformed

to that of another layer. The basic theory and important formulas for

this procedure are explained in [1]. These transformation formulas

are easily suited to the analysis of waveguides such as those used

in integrated optics, [2], [3] and diffused waveguides with up to 80

layers or more can be modeled using this method.

Of late, cylindrical structures have also become more meaningful.

The basic principle of using the method of lines to solve wave

equations in cylindrical coordinates is given in [4], A treatment of

microstrip lines of arbitrary cross section, accomplished with the
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(a) (b)

Fig. 1. Cross sections of cylindrical multilayer structures with discretiz,ation
lines using ABC’s (a) and PBC’C (b). (a) General cross section, (b) sectorial
cross section.

help of cylindrical functions, appears in [5], and in [6] the analysis

of antennas composed of micro strip and micro slot resonators using

cylindrical bodies is explained. Dipoles are analyzed in [7] using

tbe methodology described in [1]. A generalized description o F the

transformation of fields from one cylindrical boundary surface to

another, however, has not been completed. The purpose of this

document is to provide such a description. Having such gelmeral

formulas computer programming is made very easy.

II. METHODS OF ANALYSIS

The general method of analysis, described below, applies to

structures such as those diagrammedl in Fig. 1. The number of layers

in these structures is arbitrary. An arbitrary number of metallic strips

or cylinders can be placed between the layers of the structure, and

the layers can begin at p = O and extend to infinity. Structures with

a ,o-dependent permittivity (graded index fibers) can be successfully

modeled by a sufficient number of distinct layers. The goal of this

document is thus the formulation of a general transfer for fields

between two boundary layers, i.e. from a surface A to a surface B in

the ith layer. The procedure for this is analogous to those in [1]1 and

[8], [9], but in cylindrical coordinates and with angular discretiza.tion.

The permittivities in the layers can also be complex.

The whole field may be obtained from the components in the .z

direction, e. and hz. These are the only Cartesian components in the

cylindrical coordinate system, and for these components the following

wave equations are valid

where F. = E. or F= = Hz = qoH.,z = k~.z,p = k,p and

(1)

(2)

is the Laplace operator in cylindrical coordinates.k~ and q. are the

wave number and wave impedance of free space, respectively. In the

following we assume propagation in the z direction. Therefore we

write –j& for ~/&. e~~ is the effective dielectric constant.

For the solution of the wave (1) and for the determination of the

field components, a discretization in ~ direction is performed [41.
As stated there, in principle, the analysis is the same as in Cartesian

coordinates. Therefore, all that is known for the discretization in carte-

sian coordinates can be used here for the p direction. In Fig. 1 two

different possibilities are shown. To save memory and computational

effort, absorbing boundary conditions (ABC) are suitable (a). If the

whole cross section is of interest, periodic boundary conditions (PBC)
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